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1 Introduction

In this note we describe the Mplus implementation of the SRMR (standard-
ized root mean squared residual) fit index for the models where the index
is computed. Starting with Mplus 8.1, changes have been implemented to
improve the quality of the fit index and to prevent failures. The index
is now computed for more models including SEM models with categori-
cal data estimated with the weighted least squares family of estimators:
wls/wlsm/wlsmv/ulsmv. We also discuss how the Mplus SRMR fit index
should be used in practice.

The definition of SRMR varies slightly across publications and software
implementations. In addition, the early definitions of SRMR do not apply to
all SEM models. For example, the definition in Hu and Bentler (1999) does
not apply to growth models that include mean structure modeling and are
a part of the general SEM framework. If one is to use the Hu and Bentler
(1999) SRMR definition with a growth model, one can easily make the er-
roneous conclusion of approximate fit, simply because that definition does
not include terms comparing the model estimated and the sample means.
Another important example relates to the inclusion of covariates in the SEM
model. The definition used in Hu and Bentler (1999) is intended for mod-
els that have all observed variables modeled as dependent variables. The
Mplus SEM framework however enables us to separate the variables into two
groups: endogenous/dependent variables, usually denoted by Y , and exoge-
nous/independent variables, usually denoted by X. The goal of the SEM
model is then to fit the conditional distribution of [Y |X] while not attempt-
ing to model the distribution of X. This is an important modeling technique
as it allows us to focus on the more parsimonious model for [Y |X] which has
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fewer modeling assumptions, because no modeling assumptions are made re-
garding X but only for [Y |X]. For such a SEM model, the definition of Hu
and Bentler (1999) is also inappropriate because it can easily be manipu-
lated: any SEM model can be made ”approximately well fitting” simply by
adding a sufficient number of arbitrary covariates. Starting with Mplus 8.1,
the SRMR definition has been updated to reflect the growing number of SEM
models and features while preserving the nature of the SRMR index. In this
note we describe the SRMR computations implemented in Mplus 8.1.

SRMR is an approximate fit index. It can be used to establish approxi-
mate fit for a particular SEM model when that model is rejected using the
formal chi-square test of model fit. It should be noted that both SRMR
and the chi-square test of fit are designed to compare the same two models:
the SEM model (referred to as the H0 model) and the multivariate model
of unrestricted mean and variance covariance matrix (referred to as the H1
model). The SRMR index is not intended to substitute the chi-square test
or to compete with it. Instead it is intended to complement it. It is well
known that if the sample size is sufficiently large, the chi-square test can
reject the null hypothesis (the SEM model) due to discrepancies that are of
very small size, i.e. have no substantive significance, even though they are
of statistical significance. In such situations the chi-square conclusion, i.e.,
that the model does not fit well, is quite impractical. Using approximate fit
indices such as SRMR, we can then establish approximate fit, as long as the
approximate fit indices fall in a pre-established range. The acceptable range
for the SRMR index is between 0 and 0.08, see Hu and Bentler (1999). Since
most of the terms in the SRMR definition are simply MSE of estimated and
observed correlations, the value of 0.08 can be interpreted as follows. If all
correlations are equally misfitted, the model is approximately well fitting if
the estimated and the observed correlations are less than 0.08 apart.

The SRMR as implemented in Mplus is not a test. It is simply a quantity
that represents the direct distance between the H0 and the H1 models. It
is a MSE of observed and estimated correlations, standardized means and
variances. Thus it has the following advantage over other approximate fit
indices such as CFI and TLI. SRMR is easy to interpret and can be used
to locate the sources of misfit when the model is not fitting well. In the
Mplus residual output one can find all the information that is needed to
reconstruct the computation of SRMR, and thus locate the source of misfit
as the largest residual values, where the residuals are the observed minus
the estimated quantities. Note also that a proper use of the SRMR index
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mandates that the residuals are evaluated not only as a part of the SRMR
index but also individually. An approximately well fitting model is a model
with SRMR< 0.08 but also a model that does not include any large residual
values. Large residual values indicate that model modifications are needed.
SRMR values smaller than 0.08 should not be used as a justification to ig-
nore major model misfits. Large residual values indicate major discrepancy
between the model and the data and it would be inaccurate to call such
models approximately well fitting models. Because SRMR is averaging the
error terms, it is important to make sure that there is no large errors hidden
in that average. Therefore proper use of SRMR to establish approximate fit
should include an inspection of the Mplus residual output to verify that the
residuals are many small values and there are no large residual values at all.

The chi-square test of fit and the SRMR index should be used as follows.
The chi-square test of fit should be used first. This test is sometimes re-
ferred to as the test of ”exact” fit. If the exact fit does not hold, then the
SRMR index should be used to establish approximate fit. The three possible
outcomes of this stepwise procedure are as follows.

• Exact Fit
If the model fits well according to the chi-square test, there is in prin-
ciple no need to consider the SRMR index. Exact fit trumps approx-
imate fit. There is no situation when exact fit holds but approximate
fit doesn’t hold. Nevertheless, one can look at the SRMR index simply
as a distance tool which shows how different the H0 and the H1 models
are. The SRMR index and the residual output can also be used to
discover large standardized residuals. It is not uncommon that a chi-
square test of fit does not reject the null model while another test for
a specific part of the model can reject the null model. This is because
the test of fit is an omnibus test that has less power than tests that
are more targeted. Even if a null model is not rejected, i.e., there is
no significant evidence that the model is incorrect, inspecting SRMR
and the largest residual values can often lead to discovering statisti-
cally significant incremental model improvements. Furthermore, large
residuals maybe of interest even if they are not statistically significant.

It is also not uncommon that the chi-square test of fit does not reject the
model but the SRMR value is larger than 0.08. The interpretation in
this case is that the information in this sample is not sufficient to reject
the null model even though it appears that the H1 and the H0 model are
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not very close. These larger SRMR values can occur quite often when
the sample size is 200 or less, however, this is not a reason to doubt the
null model and the exact fit conclusion holds. In small samples there is
less certainty in the sample and the estimated correlations and there is
natural sampling variation that contributes to the larger SRMR values.
Regardless, when the exact fit holds, even if SRMR> 0.08, the model
should be considered well fitting.

• Approximate Fit
If the chi-square test rejects the model but SRMR≤ 0.08 and all stan-
dardized residuals are small (i.e. there are no large residuals) then we
can claim that the model is approximately well fitting. We can argue
that substantively insignificant but statistically significant differences
between the H0 and the H1 model are responsible for the chi-square
rejection.

It should be noted that the usability of SRMR with small samples is
very limited. This is because in small sample sizes correlation residuals
that are statistically significant must be large, because the standard
errors are large. Thus for samples smaller than 200 it is difficult to
argue that the concept of approximate fit even exist. For small samples,
if the fit is not an exact fit, then the differences between the H0 and the
H1 model must be large so there is limited possibility for establishing
approximate fit in such circumstances. The approximate fit concept
should primarily be used for samples larger than 200 and is most useful
for samples greater than 500.

• Poorly Fitting model
If the chi-square test rejects the model and SRMR> 0.08, the model
is poorly fitting and has to be modified. Modification indices or the
residual output can be used to guide the modifications.

We summarize this decision making process in Table 1. This also clarifies
the definition of ”Approximate fit”. Approximate fit is not defined as the
cases where SRMR ≤ 0.08, rather it is defined as the cases where SRMR ≤
0.08 and the chi-square test rejects the model.

The above discussion applies exclusively to the Mplus implementation
of SRMR. The main purpose of the above procedure is to provide a tool
for dealing with substantively insignificant but statistically significant model
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Table 1: Using chi-square and SRMR to determine model fit

SRMR ≤ 0.08 SRMR > 0.08
chi-square does not rejects Exact Fit Exact Fit

chi-square rejects Approximate fit Poor fit

misfits that tend to appear in large samples. Different definitions of SRMR
and intended purpose can be found in the literature. For example, in Maydeu-
Olivares (2017) and Maydeu-Olivares et al. (2018), an alternative definition
of SRMR is given and it is treated as a test of close fit with the goal of
providing a p-value for SRMR to fall within a certain range. This approach
is similar to the Mplus PPPP value implemented with the Bayes estimation,
see Hoijtink and van de Schoot (2017) and Asparouhov and Muthén (2017).
The main target of interest in Maydeu-Olivares (2017) and Maydeu-Olivares
et al. (2018) is the distribution of SRMR for smaller samples, which is
in contrast to the Mplus treatment of SRMR with intended use for larger
samples, i.e., the SRMR in Maydeu-Olivares (2017) is defined differently and
its intended purpose is also different.

2 SRMR definition

In this section we provide the SRMR computational details for the various
Mplus models.

2.1 The general SEM model with continuous depen-
dent variables

Let p be the number of variables in the model. Let sjk and σjk be the sample
and the model-estimated covariance between the j−th and k−th variables.
Let mj and µj be the sample and the model-estimated mean of the j−th
variable. The SRMR fit index is defined as follows

SRMR =

√
S

p(p+ 1)/2 + p
, (1)
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where S is

S =

p∑
j=1

j−1∑
k=1

(
sjk√
sjjskk

− σjk√
σjjσkk

)2

+ (2)

p∑
j=1

(
mj√
sjj
− µj√

σjj

)2

+

p∑
j=1

(
sjj − σjj
sjj

)2

. (3)

This definition is simply the MSE (mean squared error) distance between the
H0 and the H1 models, for all standardized variance covariances and means
residuals. The denominator p(p + 1)/2 + p is the total number of residuals
used in S. Note that the correlation residuals in equation (2) are simply the
difference between two correlations and have a maximum of 2. The mean
and the variance residuals, however, seen in equation (3), despite the fact
that they are standardized, are not limited by any number and can produce
very large SRMR values. This expanded SRMR definition has the advantage
over the definition in Hu and Bentler (1999) as it accounts for the model
estimated means and not just the model estimated variance covariance ma-
trix. Structural mean modeling occurs in many popular structural equation
models, including growth modeling and multiple group scalar CFA, and for
such models it is essential to use formula (1) instead of the the SRMR de-
fined in Hu and Bentler (1999). Note also that any SEM model estimated
with data that has missing values automatically becomes a structural mean
model. That is because with missing data the variance covariance parame-
ter estimation is intertwined with the mean parameter estimation and the
SEM model may not have zero mean residuals even if all the dependent vari-
able means are free parameters. This further illustrates the need to include
standardized mean residuals in SRMR.

2.2 EFA models

EFA models by definition fit only the correlation matrix, i.e., by definition
these model have zero residuals for the means and for the diagonal of the
variance covariance matrix. Thus the proper definition of SRMR is as follows

SRMR =

√
S

p(p− 1)/2
, (4)
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where S is

S =

p∑
j=1

j−1∑
k=1

(
sjk√
sjjskk

− σjk√
σjjσkk

)2

. (5)

2.3 SEM models with covariates

Suppose that q of the p variables in the model are exogenous variables. The
distribution of these variables is not modeled, i.e., the distribution of the
exogenous variables is the unrestricted mean and variance covariance matrix.
Thus q(q + 1)/2 + q of the residual terms in S are by default zero. These
terms therefore should not be counted in the denominator in formula (1).
Thus we compute SRMR in this case as

SRMR =

√
S

p(p+ 1)/2 + p− q(q + 1)/2− q
(6)

while formula (2) remains the same (the zero residuals do not contribute
anything to the definition of S). If this adjustment is not made, the SRMR
converges to zero if we add large number of irrelevant covariates and so it will
not correctly portray the quality of the SEM model regarding [Y |X]. Note
also that if a model has relatively few number of dependent variables but a
large number of covariates, this adjustment becomes very important. That
is because the number of true residuals involving the correlations between
the dependent variables and the covariates is a linear function of the number
of covariates, while the number of fake/zero residuals involving correlations
between the covariates is a quadratic function of the number of covariates,
meaning that it will grow much faster. In such situations the adjustment
becomes extremely important.

2.4 SEM models with NOMEANSTRUCTURE

When the MODEL=NOMEANSTRUCTURE is used in Mplus the means
are not modeled at all. Equivalently we can assume that the model mean
estimates are equal to the sample means. In this case the formula (1) is
adjust to reflect the fact that p of the residuals are zero by default. Thus in
this case

SRMR =

√
S

p(p+ 1)/2
. (7)
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In certain situations, for example a simple CFA model, in the case of no
missing data, the means are also guaranteed to have zero residuals by default.
Mplus will not however make this adjustment unless the
MODEL=NOMEANSTRUCTURE option is specified.

2.5 Using Information=expected

In this case Mplus uses a slight modification of the SRMR formula

SRMR =

√
S

p(p+ 1)/2 + p
, (8)

where S is defined as follows

S =

p∑
j=1

j∑
k=1

(
sjk√
sjjskk

− σjk√
sjjskk

)2

+ (9)

p∑
j=1

(
mj√
sjj
− µj√

sjj

)2

. (10)

This definition is identical to the one given in equation (1) when the sam-
ple variances and the estimated variances are equal. This is often the case
in SEM models because the residual variances are often estimated as free
parameters and thus the diagonal elements of the variance covariance ma-
trix can be match exactly. The above definition also becomes identical
to the Hu and Bentler (1999) definition when used in combination with
MODEL=NOMEANSTRUCTURE.

2.6 Multiple groups

In multiple group modeling the SRMRg is computed for each group g =
1, ..., G where G is the total number of groups. The SRMR for the full model
is computed as follows

SRMR =
G∑

g=1

ng

n
SRMRg (11)

where ng is the sample size for group g and n is the total sample size n =∑G
g=1 ng.
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2.7 WLS family of estimators

The WLS/WLSM/WLSMV/ULSMV estimators are used to estimate SEM
models with continuous dependent variables, categorical dependent variables
as well as covariates. Let Y be the total vector of variables of size p, let Y ∗ be
the vector of underlying continuous variables, that is, the Y ∗ is identical for
the continuous dependent variables and the covariates but for the categorical
variables it is the continuous underlying variable that is cut to obtain the
observed categorical values as in a standard probit model. Denote by p1
the number of categorical dependent variables, p2 the number of continuous
dependent variables and p3 the number of covariates and let’s assume that
they appear in the Y vector in that order. Suppose that the H0 model
estimated variance covariance matrix is Σ and that the corresponding H1
model variance covariance matrix is S. Suppose again that the H0 model
estimated mean vector is µ and that H1 model mean vector is m. We are not
including means for the categorical variables, instead we will consider the
corresponding values on the probability scale, which is very similar to the
correlation scale where the compared quantities are smaller than 1. Thus
we can assume that the first p1 values in µ and m are zero. Denote by pij
the H0 model estimated probability of a categorical variable Yi being in the
j−th category pij = P (Yi = j|H0), for i = 1, ..., p1 and j = 1, ..., li where li
is the number of categories the variable Yi can take. Similarly denote by qij
the H1 model estimated quantity qij = P (Yi = j|H1). The SRMR can now
be defined as follows

SRMR =

√
S

d
, (12)

where S is

S =

p∑
j=1

j−1∑
k=1

(
sjk√
sjjskk

− σjk√
σjjσkk

)2

+ (13)

p∑
j=1

(
mj√
sjj
− µj√

σjj

)2

+ (14)

p∑
j=1

(
sjj − σjj
sjj

)2

+ (15)

p1∑
i=1

li∑
j=1

(pij − qij)2 (16)
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and d is the number of residuals in the above sum that are not zero by default,
that is, d is the total number of residuals p(p + 3)/2 +

∑p1
i=1 li minus those

that are zero by default. In equation (13) the covariates correlation residuals
are zero by default. For that part of the equation we subtract p3(p3 − 1)/2
from d. For equation (14) we subtract p1+p3 as only the continuous variables
have standardized means that can have non-zero residuals. For equation (15)
we subtract p3 as the covariates have zero variance residuals by default. In
addition, however, if there are no covariates in the model we subtract p1
elements for equation (15) as all categorical variables have 1 on the diagonal
of the variance covariance matrix under both the H1 and the H0 model. In
total if there are covariates in the model

d = p(p+ 3)/2 +

p1∑
i=1

li − p1 − p3(p3 + 3)/2 (17)

and if there are no covariates

d = p(p+ 3)/2 +

p1∑
i=1

li − 2p1. (18)

In the above SRMR definition all residuals are standardized and can be con-
sidered to be on a unit/comparable scale. As previously noted the residuals
in (14) and (15) can be larger than 1 even though they are standardized.
The residuals in (13) are always less than 2 and the residuals in (16) are
always less than 1. Just as in the continuous SEM, the SRMR is dominated
by the residuals for the correlation matrix as the number of correlations is a
quadratic function of the number of variables while the means are a linear
function of the number of variables. However, mean structure is accounted
for, meaning that, model misfit in the means will contribute to the SRMR
value. This applies to both the continuous and the categorical variables.
When a categorical variable Yi is binary both P (Yi = 1) and P (Yi = 2) are
included in the SRMR even though the residual for the two categories are
the same. This is done for consistency with respect to non-binary categorical
variables where such a residual relationship is more complex.

With the WLS family of estimators a conditional model for [Y |X] is
estimated. Let Y = (Y0, X) where Y0 represents the vector all dependent
variables and X represents all covariates. Under both the H0 and the H1
model the following linear regression model is estimated for the underlying
continuous variables Y ∗

0

Y ∗
0 = α + βX + ε (19)
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where θ = V ar(ε). The quantities α, β and θ can be found in the Mplus
residual output for the H0 model and in the sample statistics output for
the H1 model. The differences between these quantities can be found in
the Mplus residual output as well. Under the H0 model usually there is a
structure on α, β and θ imposed by the estimated SEM model. Under the
H1 model α, β and θ are estimated as unrestricted parameters.

The computation of both Σ and S is based on the above equation. Using
the sample covariance for the covariates Sx the total variance covariance
matrix for the entire vector Y is computed as

V =

(
θ + βSxβ

T Sxβ
T

βSx Sx

)
(20)

and from here the correlations in equation (13) are computed. These cor-
relations and the corresponding residuals can be found in Mplus residual
output.

The probabilities pij and qij are computed similarly. Denote the threshold
parameters for a categorical variable Yi by τij. The probability

P (Yi = j) = Φ
(τij − βiµx√

Vii

)
− Φ

(τi,j−1 − βiµx√
Vii

)
(21)

where µx is the sample mean of the covariates, βi is the i−th row of β and Vii is
the i−th diagonal element of V computed in (20). This method of computing
P (Yi = j) is slightly different from the more elaborate method used in the
Mplus residual output, where P (Yi = j) is computed for each observation
in the data (i.e. for each observed set of covariates) and averaged across
observations. As usual, the first threshold τi,0 in equation (21) is assumed to
be −∞ and the last threshold τi,li is assumed to be +∞.

In Mplus 8.1 for the WLS family of estimators this SRMR fit index re-
places the WRMR fit index which has been shown to perform poorly for
situations with extremely large sample sizes, see DiStefano et al. (2018).

2.8 Multilevel models

Two-level models in Mplus are based on the fundamental decomposition of
each variable into a within level component and a between level component

Y = Yw + Yb, (22)
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where Yw ∼ N(µw,Σw) and Yb ∼ N(µb,Σb). For identification purpose the
mean parameter exist only on one of the levels and for each variable this is de-
termined as the highest level the variable is present on. That is, variables that
are declared as within-only variables (on the within list) have a mean param-
eter in the within-level mean vector µw, while variables that are between-only
variables (on the between list) or variables that are within-between (not on
either the within or the between list) have their mean parameter in the µb

vector. In addition, within-only variable have zeros in the corresponding Σb

rows and columns while between-only variables have zeros in the correspond-
ing Σw rows and columns. The H1 model estimates unrestricted µw, Σw, µb,
and Σb parameters while the H0 model estimates structured µw, Σw, µb, and
Σb. These quantities are the basis for forming the residuals that are used for
the construction of SRMR for multi-level models. Once the quantities are
estimated under both the H0 and the H1 model the SRMR is computed sep-
arately for the two-levels using the same approach as for single level models,
such as for example equations (1) and (2). In equation (1) the denominator
is always adjusted so that it represents the number of residuals used in the
definition of the SRMR on that level that are not zero by default. For exam-
ple, means are counted only for the level where the mean residual is present,
i.e., only on one of the two levels. If a variable is a between only variable,
it will not contribute to the SRMR definition on the within level both in
the numerator and the denominator in equation (1). Similarly within-only
variables do not contribute to the SRMR on the between level. In three level
models similar approach is implemented and the SRMR is computed on each
level separately. In multilevel models it is not unusual that the between level
variance for a particular variable is very small. To avoid division by near-zero
in equation (3) variances smaller than 0.01 are replaced by 0.01. In addition,
the standardization of the mean parameters for multilevel models uses the
variance from both levels rather than the variance on the level that the mean
is present. That is, the contribution of the mean residuals to the SRMR in
equation (3), in two-level models is replaced by

p∑
j=1

(
mj√

sw,jj + sb,jj
− µj√

σw,jj + σb,jj

)2

. (23)

where sw,jj and sb,jj are the H1 estimated within and between variance pa-
rameters for the j−th variables and σw,jj and σb,jj are the corresponding H0
estimated quantities. This is important because standardizing with between
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level variances only (which can be very small) would produce improperly
standardized means.

An additional complexity arises in multilevel models for SRMR on the
between level. Because the sample size on the between level is the number
of clusters in the sample, it is not unusual to have samples with fewer than
200 clusters. That implies that the 0.08 cut-off value is too strict for such
situations. Well fitting models can exceed that value simply because of the
small number of clusters on the between level. In such situations chi-square
testing is needed that can test the within level model separately or the be-
tween level model separately to verify that the model on the between or the
within level is fitting well. Such chi-square can be constructed as follows.
The H0 model consists of an H0 model for the within level and an H0 model
for the between level. Consider the model M1 that preserves the H0 model
for the between level while estimating unrestricted variance covariance on the
within level. Estimating M1 and testing that model against the H1 model
will allow us to essentially test only the H0 model for the between level using
the standard chi-square test. Thus in those situations where the SRMR on
the between level is above the 0.08 level and the number of clusters is small
we can check whether or not the large SRMR value indicates a statistically
significant rejection of the H0 between level model or not. Similarly we can
construct a model M2 which has unrestricted between level model and H0
within level model to separately evaluate the fit on the within level through
the regular chi-square test. Using the models M1 and M2 we can therefore
establish exact or approximate fit for each of the two-levels.

Note also that the H0 model SRMR on the between level may be slightly
different between the M1 and the H0 models. That is because the estimations
on the within and the between levels are not independent of each other.
In principle, however, the differences should be small. If larger differences
are observed a sever model misspecification is likely, such as for example, a
variable declared as within-only when a substantial cluster level contribution
exist.

2.9 Combinations

In the above sections we listed the various feature that affect the definition
of the SRMR model. Such features can of course appear in combination.
For example, multiple group multilevel models, or multilevel models with co-
variates, or multilevel models with categorical and continuous variables. To
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construct the SRMR in such situations the considerations for the combined
features apply. For example, consider a within-only covariate in multilevel
models. The within-only covariate does not provide non-zero mean and vari-
ance residuals either on the within or the between level. Thus such residuals
are not counted towards the denominator in equation (1) the same way that
this is done in equation (6). That covariate will contribute to the within
level SRMR in terms of correlation residuals between the covariate and all
dependent variables with the exception of between-only dependent variables.

Similarly, in two-level models with categorical variables, when the mean
structure is computed for categorical variables, i.e. when the probabilities for
the separate categories are computed, the threshold parameters in equation
(21) are standardized using the sum of the within-level and the between-level
variance

P (Yi = j) = Φ
( τij − βiµx√

Vw,ii + Vb,ii

)
− Φ

( τi,j−1 − βiµx√
Vw,ii + Vb,ii

)
(24)

as this was done in equation (23) for the means of the continuous variables.
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